Respuesta :
Answer:
The perimeter of the hexagon is equal to [tex]36\ units[/tex]
Step-by-step explanation:
Let
x-------> the length side of the hexagon
L-----> the length of the rectangle
W-----> the width of the rectangle
we know that
The perimeter of the hexagon is equal to
[tex]P=6x[/tex]
The perimeter of the rectangle is equal to
[tex]P=2L+2W[/tex]
so
[tex]6x=2L+2W[/tex]
[tex]3x=L+W[/tex] -------> equation A
[tex]x=L-4[/tex] -------> equation B
[tex]W=L-2[/tex] -------> equation C
Substitute equation B and equation C in equation A
[tex]3[L-4]=L+[L-2][/tex]
Solve for L
[tex]3L-12=2L-2[/tex]
[tex]3L-2L=12-2[/tex]
[tex]L=10\ units[/tex]
Find the value of x
[tex]x=L-4[/tex]
[tex]x=10-4=6\ units[/tex]
Find the perimeter of hexagon
[tex]P=6x[/tex]
[tex]P=6(6)=36\ units[/tex]