Respuesta :
Answer:
[tex]3.75\ cm^{3}[/tex] or [tex]3\frac{3}{4}\ cm^{3}[/tex]
Step-by-step explanation:
step 1
Find the volume of the rectangular prism
we know that
The volume of a rectangular prism is
[tex]V=LWH[/tex]
In this problem we have
[tex]L=2\frac{1}{2}\ cm=\frac{2*2+1}{2}=\frac{5}{2}\ cm[/tex]
[tex]W=2\frac{1}{2}\ cm=\frac{2*2+1}{2}=\frac{5}{2}\ cm[/tex]
[tex]H=5\ cm[/tex]
substitute in the formula
[tex]V=(\frac{5}{2})(\frac{5}{2})(5)=\frac{125}{4}=31.25\ cm^{3}[/tex]
step 2
Find the difference between the volume of the prism and the volume of the storage container
[tex]35\ cm^{3}-31.25\ cm^{3}=3.75\ cm^{3}[/tex]
[tex]3.75=3\frac{3}{4}\ cm^{3}[/tex]