Respuesta :
By definition, the volume of a rectangular prism is given by:
[tex]V = (w) * (h) * (l) [/tex]
Where,
l: length
h: height
w: width
Substituting values we have:
[tex]2x ^ 3 + 17x ^ 2 + 46x + 40 = (w) * (x + 2) * (x + 4) [/tex]
From here, we clear the value of w.
[tex]w = (2x ^ 3 + 17x ^ 2 + 46x + 40) / ((x + 2) * (x + 4)) [/tex]
Factoring the numerator we have:
[tex]w = ((x + 2) * (x + 4) * (2x + 5)) / ((x + 2) * (x + 4)) [/tex]
Canceling similar terms we have:
[tex]w = 2x + 5 [/tex]
Answer:
The missing side is of length:
w = 2x + 5
[tex]V = (w) * (h) * (l) [/tex]
Where,
l: length
h: height
w: width
Substituting values we have:
[tex]2x ^ 3 + 17x ^ 2 + 46x + 40 = (w) * (x + 2) * (x + 4) [/tex]
From here, we clear the value of w.
[tex]w = (2x ^ 3 + 17x ^ 2 + 46x + 40) / ((x + 2) * (x + 4)) [/tex]
Factoring the numerator we have:
[tex]w = ((x + 2) * (x + 4) * (2x + 5)) / ((x + 2) * (x + 4)) [/tex]
Canceling similar terms we have:
[tex]w = 2x + 5 [/tex]
Answer:
The missing side is of length:
w = 2x + 5
The volume of a rectangular prism is the product of its dimension.
The missing side length is 2x + 5.
The volume is given as:
[tex]\mathbf{V = 2x^3 + 17x^2 + 46x + 40}[/tex]
Let the missing side be y.
So, we have:
[tex]\mathbf{V = (x + 2) \times ( x + 4) \times y}[/tex]
So, we have:
[tex]\mathbf{(x + 2) \times ( x + 4) \times y = 2x^3 + 17x^2 + 46x + 40}[/tex]
Factorize
[tex]\mathbf{(x + 2) \times ( x + 4) \times y = (x + 2) \times (x + 4) \times (2x +5)}[/tex]
Cancel out common factors
[tex]\mathbf{y = (2x +5)}[/tex]
Remove brackets
[tex]\mathbf{y = 2x +5}[/tex]
Hence, the missing side length is 2x + 5.
Read more about volumes at:
https://brainly.com/question/22885718