Respuesta :

[tex]\bf \cfrac{3.7\times 10^{-12}(42)}{(.000000025)(4.0\times 10^{-15})}\implies \cfrac{37\times 10^{-13}(42)}{(25\times 10^9)(4\times 10^{-15})}[/tex]

[tex]\bf \cfrac{37(42)\times 10^{-13}}{25(4)\times 10^910^{-15}}\implies \cfrac{1554\times 10^{-13}}{100\times 10^{9-15}}\implies \cfrac{1554\times 10^{-13}}{1\times 10^2\times 10^{9-15}} \\\\\\ \cfrac{1554\times 10^{-13}}{10^{2+9-15}}\implies \cfrac{1554\times 10^{-13}}{10^{-4}}\implies 1554\times 10^{-13}\times 10^4 \\\\\\ 1554\times 10^{-13+4}\implies 1554\times 10^{-9}\implies \cfrac{1554}{10^9}\implies 0.000001554[/tex]