Respuesta :

530.93
The answer for area.


Answer:

The area of the circle having diameter of 26 is  530.66 square units.

Explanation:

Given:

Diameter of the circle= 26 units

To find:

Area of the circle =?

Solution:

Finding area using Diameter

[tex]\text {Area } A=\pi\left(\frac{d}{2}\right)^{2}[/tex]

substituting the values we get,

[tex]\text {Area } A=3.14\left(\frac{26}{2}\right)^{2}[/tex]

[tex]\text {Area } A=3.14(13)^{2}[/tex]

[tex]\text {Area } A=3.14(169)[/tex]

[tex]\text {Area } a=530.66 \text { units }[/tex]

Following methods can also be used to find the area of the circle.

Aliter1: finding area using radius

[tex]\text {radius } r=\frac{\text {diamater}}{2}[/tex]

[tex]\text {radius } r=\frac{26}{2}[/tex]

[tex]\text {radius } r=13 \text {units}[/tex]

Now ,

[tex]\text {Area } A=\pi r^{2}[/tex]

[tex]\text {Area } A=(3.14)(13)^{2}[/tex]

[tex]\text {Area } A=(3.14)(169)[/tex]

[tex]\text {Area } A=530.66 \text { square units }[/tex]

Aliter 2:Finding Area using circumference

Circumference of the circle [tex]c=2 \pi r[/tex]

[tex]c=2 \times(3.14)(13)[/tex]

[tex]c=2 \times(40.82)[/tex]

[tex]c=81.64 \text { units }[/tex]

Now  

\operatorname [tex]{Area} A=\frac{c^{2}}{4 \pi}[/tex]

Substituting values,

[tex]\text {Area } A=(81.64)^{2} /(4 \pi)[/tex]

[tex]\text {Area } A=(81.64)^{2} /(4)(3.14)[/tex]

[tex]\text {Area } A=(665.08) /(4)(3.14)[/tex]

[tex]\text { Area } A=(6665.08) /(12.56)[/tex]

[tex]\text { Area } A=530.66 \text { square units }[/tex]

Result:

Thus the area of the circle with a diameter 26 units is  530.66 square units.