Respuesta :

The graph of y = tan x has vertical asymptotes at x = π/2 and x = –π/2,. The period of the tangent function is π, vertical asymptotes also occur when x = π/2 + nπ, where n is an integer.

Answer:

the asymptotes of graph y=tan(x) occur at  [tex]\frac{pi}{2}+n\pi[/tex]

Step-by-step explanation:

The graph  of y=tan(x) is shown in figure-1

[tex]tan\,x=\frac{sin\,x}{cos\,x}[/tex]

so, the vertical asymptotes occur when dinominator is zero

cos x = 0

[tex]0=cos(\frac{pi}{2}) = cos(\frac{pi}{2}+n\pi)[/tex]

The vertical asymptotes occur at x=[tex]\frac{pi}{2}+n\pi[/tex]

where n is an integer.

Hence, the asymptotes of graph y=tan(x) occur at  [tex]\frac{pi}{2}+n\pi[/tex]

Ver imagen FelisFelis