Respuesta :
[tex]\bf \textit{Amount for Exponential Decay using Half-Life}
\\\\
A=P\left( \frac{1}{2} \right)^{\frac{t}{h}}\qquad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{initial amount}\to &80\\
t=\textit{elapsed time}\to &140\\
h=\textit{half-life}\to &35
\end{cases}
\\\\\\
A=80\left( \frac{1}{2} \right)^{\frac{140}{35}}\implies A=80\left( \frac{1}{2} \right)^4[/tex]
At the end of 140 hours, 3.151mL of the sample will remain in the flask.
Data;
- Half-Life = 35 hours
- Initial volume = 80mL
- Time = 140 hours
Half-Life
To solve this problem, we need to find the disintegration constant which we can use the formula of half-life to do so.
[tex]T_\frac{1}{2} = \frac{\ln2}{\lambda}[/tex]
Let's substitute the values and solve.
[tex]T_\frac{1}{2} = \frac{\ln2}{\lambda}\\\lambda = \frac{\ln2}{t_\frac{1}{2} }\\ \lambda = \frac{0.693}{35} \\\lambda = 0.0231 hr^-^1[/tex]
The formula of radioactivity is given as
[tex]N = N_0 e^-^\lambda^*^t\\[/tex]
Let's substitute the values and solve.
[tex]N = N_0 e^-^\lambda^*^t\\\\N = 80 * e^-^(^0^.^0^2^3^1^*^1^4^0^)\\N = 80 * e^-^3^.^2^3^4\\N = 80 * 0.039399\\N = 3.151[/tex]
At the end of 140 hours, 3.151mL of the sample will remain in the flask.
Learn more on radioactivity here;
https://brainly.com/question/1748389