Respuesta :
Answer:
(–3, 6) and (6, –9) and (0, 2) and (5, 5)
Step-by-step explanation:
Given : Slope = [tex]\frac{-3}{5}[/tex].
To find: Which ordered pairs could be points on a line that is perpendicular to this line.
Solution : We have given that Slope = [tex]\frac{-3}{5}[/tex].
Slope = [tex]\frac{y_{2}-y_{1} }{x_{2}- x_{1}}[/tex].
For (–8, 8) and (2, 2)
Slope = [tex]\frac{2- 8 }{2 + 8}[/tex].
Slope = [tex]\frac{-6 }{10}[/tex].
Slope = [tex]\frac{-3 }{5}[/tex].
For (–5, –1) and (0, 2).
Slope = [tex]\frac{2+1 }{0 + 5}[/tex].
Slope = [tex]\frac{3 }{5}[/tex].
For, (–3, 6) and (6, –9)
Slope = [tex]\frac{-9- 6}{6 + 3}[/tex].
Slope = [tex]\frac{-15 }{9}[/tex].
Slope = [tex]\frac{-5}{3}[/tex].
For (–2, 1) and (3, –2)
Slope = [tex]\frac{-2 -1 }{3 +2}[/tex].
Slope = [tex]\frac{-3 }{5}[/tex].
For (0, 2) and (5, 5)
Slope = [tex]\frac{5 -2 }{5 -0}[/tex].
Slope = [tex]\frac{3 }{5}[/tex].
Therefore, (–3, 6) and (6, –9) and (0, 2) and (5, 5)