Answer:
[tex]493.5[/tex][tex]cm^{2}[/tex]
Step-by-step explanation:
From the diagram provided, we have the following information;
Parallelogram CDEF
[tex]Base=29[/tex]
[tex]Height=21[/tex]
Triangle EBF
[tex]Base=11[/tex]
[tex]Height=21[/tex]
We would begin by calculating the area of both plane shapes;
The area of the parallelogram is given by the formula;
[tex]Area=b*h[/tex]
[tex]Area=29*21[/tex]
[tex]Area=[/tex][tex]609cm^{2}[/tex]
The area of the triangle is given by the formula;
[tex]Area=[/tex][tex]\frac{1}{2}b*h\\[/tex]
[tex]Area=[/tex][tex]\frac{1}{2}*11*21[/tex]
[tex]Area=[/tex][tex]\frac{231}{2}[/tex]
[tex]Area= 115.5[/tex][tex]cm^{2}[/tex]
To find out how much greater is the area of the parallelogram (CDEF) than that of the triangle (EBF) in square centimeters, we simply find the difference between both results and this now gives us;
[tex]Parallelogram-Triangle=609-115.5[/tex]
[tex]Parallelogram-Triangle=493.5[/tex]
[tex]Answer: 493.5[/tex][tex]cm^{2}[/tex]