Respuesta :

Given:

The graph of

[tex]y=2x^2-kx+6[/tex]

Required:

What are the possible value(s) of k?

Explanation:

[tex]Set\text{ y = 0, evaluate the quadratic at }h=-\frac{b}{2a}and\text{ solve for k}[/tex]

You want to find the value the value of k such that the y coordinate of the vertex is 0.

[tex]\begin{gathered} y=2x^2-kx+6 \\ 0=2x^2-kx+6 \end{gathered}[/tex]

The x coordinate, h , of the vertex is found, using the following equation:

[tex]\begin{gathered} D=b^2-4ac \\ b^2-4ac=0 \\ k^2-4\times2\times6=0 \\ k^2-48=0 \\ k^2=48 \\ k=\pm4\sqrt{3} \end{gathered}[/tex]

Answer:

So, values of k are above.